183.17.231.* 2020-10-14 13:12:33 |
如今,数据的重要性日益凸显。在使用数据的同时,数据的使用和挖掘也决定着企业的竞争价值。数据从最初的原始状态经过数据分析技术的整合,变成对于企业有利的数据源。在对数据分析时的思路和数据分析的流程有哪些?
数据分析思路
1.细分分析
细分分析是分析的基础,单一维度下的指标数据的信息价值很低。因此通过细分分析扩大维度。细分方法可以分为两类,一类逐步分析,另一类是维度交叉。
2.对比分析
对比分析主要是指将两个相互联系的指标数据进行比较,通过相同维度下的指标对比,找出业务在不同阶段的问题。常见的对比方法包括:时间对比,空间对比,标准对比。
3.同期分析
同期分析在数据运营领域十分重要,互联网运营特别需要仔细洞察留存情况。通过对性质完全一样的可对比群体的留存情况的比较,来分析哪些因素影响用户的留存。
4.聚类分析
聚类分析具有简单,直观的特征,网站分析中的聚类主要分为:用户,页面或内容,来源。用户聚类主要体现为用户分群,用户标签法;页面聚类则主要是相似,相关页面分组法;来源聚类主要包括渠道,关键词等。
数据分析流程
1.明确数据分析的目标
做任何事都需要有一个明确的目标,数据分析亦是如此,在做数据分析时,需要明确数据分析的目标是什么,按照目标进行相应规划。
2.需要采集哪些信息
数据分析面向的对象就是数据,对于进行数据分析所需要的原始数据,需要有一个明确的认知,需要采集的原始数据要对应目标。
3.数据的整理与分析
数据采集完毕后,对于原始数据将要进行数据的整理与分析,使用数据分析工具对数据进行智能化的加工处理。使得有用的数据得以提炼。
4.数据的展现与输出
有用数据整理完毕后,需要对于特定的形式进行展示说明,使得数据可视化。运用相应的图表将数据图像化,更加直观清楚的了解数据。
大数据分析的思路与流程.通过中琛魔方大数据平台(www.zcmorefun.com)讲述的内容我们不难发现数据分析的内容是很多的,但是大家在进行数据分析的时候一定要做好数据分析的细节工作,希望这篇文章能够给大家带来帮助,只有做好这些步骤,才能够做好数据分析的工作。 |