中国简单快捷的免费行业信息发布平台
·手机版 ·注册 ·登录 ·会员中心 ·忘了密码 ·导航 ·帮助
名站在线LOGO
·设 为 首 页
·收 藏 本 站
·新 站 登 录
网站首页
|
行业供求
|
行业产品
|
行业公司
|
站内检索
|
行业资讯
|
网站导航
|
链接交换
|
流量交换
|
网友收藏
您当前的位置: 首页 > 行业贴吧 > 话题


行业贴吧

(注意:网友的发布表不代表本站立场。)
回复话题
发新话题
返回列表
话题: 大数据分析模型构建步骤
183.17.229.*
2020-07-10 13:16:13
  我们知道做认识事情都有个流程顺序,正确的流程可以事半功倍,错误的流程往往会导致事情重新来做,越来越多的企业都实现了大数据营销推广。今天我们就来了解一下,大数据分析中的模型构建步骤。





  大数据环境下的数据分析模型构建步骤



  常用的数据挖掘方法主要是基于客户画像体系与结果,选取相关性较大的特征变量,通过分类模型、聚类模型、回归模型、神经网络和关联规则等机器算法进行深度挖掘。常用算法的基本内容如下:



  1、分类和聚类



  分类算法是极其常用的数据挖掘方法之一,其核心思想是找出目标数据项的共同特征,并按照分类规则将数据项划分为不同的类别。聚类算法则是把一组数据按照相似性和差异性分为若干类别,使得同一类别数据间的相似性尽可能大,不同类别数据的相似性尽可能小。分类和聚类的目的都是将数据项进行归类,但二者具有显著的区别。分类是有监督的学习,即这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类则是无监督的学习,不需要对数据进行训练和学习。常见的分类算法有决策树分类算法、贝叶斯分类算法等;聚类算法则包括系统聚类,K-means均值聚类等。



  2、回归分析



  回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,其主要研究的问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。按照模型自变量的多少,回归算法可以分为一元回归分析和多元回归分析;按照自变量和因变量间的关系,又可分为线性回归和非线性回归分析。



  3、神经网络



  神经网络算法是在现代神经生物学研究的基础上发展起来的一种模拟人脑信息处理机制的网络系统,不但具备一般计算能力,还具有处理知识的思维、学习和记忆能力。它是一种基于导师的学习算法,可以模拟复杂系统的输入和输出,同时具有非常强的非线性映射能力。基于神经网络的挖掘过程由数据准备、规则提取、规则应用和预测评估四个阶段组成,在数据挖掘中,经常利用神经网络算法进行预测工作。



  4、关联分析



  关联分析是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的关联、相关性或因果结构,即描述数据库中不同数据项之间所存在关系的规则。例如,一项数据发生变化,另一项也跟随发生变化,则这两个数据项之间可能存在某种关联。关联分析是一个很有用的数据挖掘模型,能够帮助企业输出很多有用的产品组合推荐、优惠促销组合,能够找到的潜在客户,真正的把数据挖掘落到实处。4市场营销大数据挖掘在精准营销领域的应用可分为两大类,包括离线应用和在线应用。其中,离线应用主要是基于客户画像进行数据挖掘,进行不同目的针对性营销活动,包括潜在客户挖掘、流失客户挽留、制定精细化营销媒介等。而在线应用则是基于实时数据挖掘结果,进行精准化的广告推送和市场营销,具体包括DMP,DSP和程序化购买等应用。



  大数据分析模型构建步骤.中琛魔方大数据分析平台(www.zcmorefun.com)表示从开始思考目标到**可视化呈现,从发现问题到提出解决方案,身为数据运营者,我们既需要有整体思维,能够从全流程去把握数据分析方法,也需要对细节**追求,优化每一个步骤。
共0个回复
回复话题
发新话题
返回列表



新站登录--网站简介--流量交换--名站收藏夹--广告服务--友情链接--免责声明--联系我们--意见建议--违法举报--侵权举报
Copyright 2005-2025 名站在线[fwol.cn]版权所有 经营许可证:粤ICP备17047754号